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Block Ciphers (Theoretically)

A family of permutations
E:KxD—D

where:
@ K is the key space; and
@ D is the domain or the message space.



PRP Security

Intuition:

@ Cannot tell apart the outputs of the block cipher from truly
random values.

More formally:
AdvP (A) :=Pr [K &K AEK) = 1} -

Pr [G & Perm(D) : AGC) = 1}



Related-Key Attacks (RKA)

@ Denote by ¢ : K — K a related-key deriving function.
@ & is the set of available/allowed ¢’s.

Intuition:
@ Can query an RK oracle on (¢, M) to get E(¢(K), M).
@ E should be still indist. from a random permutation.

Formally, in a ®-restricted attack:
AdvET™ (A) :=Pr |K & K01 AERKEAO) — ]

Pr [K & K, G & Perm(/C, D) : AGRKCK)) — o



Why RKA?

@ A number of related-key attacks against high-profile
ciphers have been discovered.

@ Block ciphers are expected to resist related-key attacks.

@ There are widely-deployed real-world protocols which
make use of related-keys (e.g. EMV and 3GPP).

@ Used in analysis of tweakable modes of operation.
@ Not clear what a “meaningful” related-key attack is.

@ Theoretically interesting: Recent construction of RKA
secure PRFs by Bellare and Cash (CRYPTO 2010).



Related-Key Attacks in the Ideal-Cipher Model

@ General feasibility results are hard to achieve in standard
model.

@ Move to the ideal-cipher model: get minimum restrictions
on ¢ s.t. RKA is provably achievable for an ideal cipher.

@ To formalise security in the ICM, as usual, give oracle
accessto Eand E— .

Formally:
AdVERS (A) = Pr[K & KC:E & Perm(KC, D) : ABE ERKCI) ]

Pr [K & ICE & Perm(KC, D);G & Perm(KC, D) : AEE7T.G(RK(-K), ) :1}



Restrictions on the RKD Set ¢

Call ¢ Output-Unpredictable (UP) if:

@ No adversary can predict the output of any ¢, i.e. it cannot
return a ¢ and a K’ s.t. ¢(K) = K’ for a random K.

Call ¢ Collision-Resistant (CR) if:

@ No adversary can trigger collisions between two ¢’s, i.e. it
cannot return ¢4 and ¢z s.t. ¢1(K)=¢2(K) for a random K.



The Bellare-Kohno Theorem

Theorem (Bellare and Kohno — EUROCRYPT 2003)

Fix a key space K and domain D. Let ® be a set of RKD
functions over K. Suppose ¢ is both CR and UP. Then no
aadversary can break an ideal cipher under related-key attacks:

AR (A) < Advg (B) + Advy® (C).



The Bellare-Kohno Theorem: Proof

AE(7)7E(¢1 (K)7)7E(¢2(K)7)

Assume different ¢’s always lead to different keys:
CR allows separating distinct ¢1 and ¢» queries.
UP allows separating ¢ queries from E or E~' queries.
Now answer queries randomly. O




Interpretations of the BK Theorem

The BK theorem is about ideal ciphers.
What does it mean for real block ciphers?

@ For any CR and UP o, there is a block cipher E which
resists ®-restricted attacks.

© There is a block cipher E which resists all ¢-restricted
attacks, as long as ¢ is CR and UP.



Interpretations of the BK Theorem

The difference is in the order of quantifiers.
@ Vo, 3JE, E is d-secure.
Q@ 3JE,vo, E is d-secure.

@ In the BK theorem E is chosen randomly after ¢.

@ So the 1st interpretation is accurate, and don’t expect
natural counterexamples.

@ Want E to resist all d-restricted attacks, including those
which may depend on E: 1stis not as useful as 2nd.

@ But we show a natural counterexample to the 2nd
interpretation.



Bernstein’s Attack - The RKD set

Consider the E-dependent RKD set:
A ={K— K,K— E(K,0)}

If E is PRP secure, then this set is both UP and CR.



Bernstein’s Attack - The Attack

Algorithm A’: (where f is either E or G)
Query RKon (K — K,0). Get x := f(K,0)
Query RKon (K — E(K,0),0). Get y := f(E(K,0),0)
Calculate z := E(x,0)
Return (z =y)

o [f= E| have x = E(K,0), y = E(E(K,0),0), and
z = E(E(K,0),0). Hence z = y with probability 1.

o [f = Gl have x = G(K,0), y = G(E(K,0),0), and
z=E(G(K,0),0). Since G is a randomly chosen
permutation

Pr[z = y] = Pr[E(G(K,0),0) = G(E(K,0),0)] = 1/|K]|.



Beyond Indistinguishability: Harris’s Attack

Harris gives an attack which recovers the key.
Roughly it works as follows:

@ The RKD set contains functions ¢; such that the j-th bit of
E(¢i(K), m) matches the i-th bit of K with noticeable prob.

@ The key K can then be recovered bit-by-bit (after
amplification).

@ Slight modification of this set is shown to be UP and CR.

@ More details in the paper.



RKD Functions with Oracle Access to E and E—!

Our goal is to capture Bernstein-like attacks, i.e.
Model ¢’s which depend on E.

Extend modelling of RKD functions:
@ Allow RKD functions to perform subroutine calls to oracles
O4 and Os.
@ Oy and O, are instantiated with £ and E~" respectively.
@ Write the set as ®5:E7" and functions as ¢5-E .

The advantage of an adversary A:

prp-orka
Adv¢E,E*1 D (A)

is defined analogously.



Oracle UP and Oracle CR

Call ¢ Oracle-Output-Unpredictable (OUP) if:
@ No adversary can return a ¢5-€" and a K’ such that:

oFE(K) = K/,
where K and E are randomly chosen.

Call ¢ Oracle-Collision-Resistant (OCR) if:

@ No adversary can return ¢5€ " and ¢5F ' such that:
EE-1 E,E-
¢1’ (K):QSQ’ (K),

where K and E are randomly chosen.



Taking Care of Extra Collisions

@ Recall now ¢’s have oracle access to E and E~1.
@ New collisions between implicit and explicit queries to E or
E~" might arise:
e Between ¢’s query and A’s RK queries on ¢’ # ¢.
e Between ¢’s query and A’s RK queries on ¢’ = ¢!
e Between ¢’s query and A’s query to E or E~'.
@ Take care of this by introducing a new condition which
rules out such collisions.



New Condition: Oracle-Independence

Call ¢ Oracle-Independent (OIND) if:

@ No adversary can return a ¢'5:E7" (K) or a key K’, another
(not necessarily distinct!) ¢ (K), and an x such that:

(6557 (K) or K', x) € {Queries by 65" (K) to E/E~"},

where K and E are randomly chosen.



Main Theorem

Theorem

Fix a key space K and domain D. Let ®E-E~" be a set of oracle
RKD functions over K. Suppose this set is OCR, OUP, and
OIND. Then no adversary can break the ideal cipher under
oracle related-key attacks. More formally:

AP (A) <AV (B)HAQVOP,  (C)+AdVIX (D)

Remark: For standard RKD sets the OIND condition is
automatically satisfied. Hence the above is an extension of the
BK theorem.



Main Theorem: Proof

AEC).E(670(K), ), Eo5 ) (K),)

Proof.

OCR allows separating distinct ¢4 and ¢» queries.

OUP allows separating ¢ queries from E/E~" queries.

OIND allows separating E/E~" queries in the exponent from
both E/E~" and ¢ queries downstairs. O



Results: Ruling out Bernstein’s Attack

Theorem
Let

AF = {K = K K~ E(K,0)}

denote Bernstein’s set of oracle RKD functions. Then AF does
not satisfy the oracle-independence property.

Remark: Harris’s attack also doesn’t satisfy OIND.



Results: Possibility Results

Theorem (EMV)

Fix a key space K, and let D = K. Then the following oracle
RKD set is OCR, OUR, and OIND.

QF .= {K = E(K,x) : x € D}.

Theorem

Fix a key space IC, and let D = K. Then the following oracle
RKD set is OCR, OUR, and OIND.

of = {K— K,K — E(0,K)}.



Final Remarks

@ Bernstein’s and Harris’s attacks are “illegal” in the new
model.

@ Even if we forget about the new condition, the attacks can
now be replicated in the ICM.

@ Expect a good block cipher E* to resist Qg.- and
©e--restricted attacks.

@ In Biryukov et al.’s attack on AES the nature of dependency
on E is not known, as it uses underlying building blocks.
Hence the attack should be seen as interesting.



Thank You

Thank you for your attention.
Questions/Suggestions?
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