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Block Ciphers (Theoretically)

A family of permutations

E : K ×D → D

where:
K is the key space; and
D is the domain or the message space.



PRP Security

Intuition:
Cannot tell apart the outputs of the block cipher from truly
random values.

More formally:

Advprp
E (A) := Pr

[
K $← K : AE(K ,·) = 1

]
−

Pr
[
G $← Perm(D) : AG(·) = 1

]



Related-Key Attacks (RKA)

Denote by φ : K → K a related-key deriving function.
Φ is the set of available/allowed φ’s.

Intuition:
Can query an RK oracle on (φ,M) to get E(φ(K ),M).
E should be still indist. from a random permutation.

Formally, in a Φ-restricted attack:

Advprp-rka
Φ,E (A) := Pr

[
K $← K : AE(RK(·,K ),·) = 1

]
−

Pr
[
K $← K; G $← Perm(K,D) : AG(RK(·,K ),·) = 1

]



Why RKA?

A number of related-key attacks against high-profile
ciphers have been discovered.
Block ciphers are expected to resist related-key attacks.
There are widely-deployed real-world protocols which
make use of related-keys (e.g. EMV and 3GPP).
Used in analysis of tweakable modes of operation.
Not clear what a “meaningful” related-key attack is.
Theoretically interesting: Recent construction of RKA
secure PRFs by Bellare and Cash (CRYPTO 2010).



Related-Key Attacks in the Ideal-Cipher Model

General feasibility results are hard to achieve in standard
model.
Move to the ideal-cipher model: get minimum restrictions
on Φ s.t. RKA is provably achievable for an ideal cipher.
To formalise security in the ICM, as usual, give oracle
access to E and E−1.

Formally:

Advprp-rka
Φ,K,D (A) := Pr

[
K $← K :E $← Perm(K,D) :AE ,E−1,E(RK(·,K ),·) =1

]
−

Pr
[
K $← K;E $← Perm(K,D);G $← Perm(K,D) :AE ,E−1,G(RK(·,K ),·) =1

]



Restrictions on the RKD Set Φ

Call Φ Output-Unpredictable (UP) if:
No adversary can predict the output of any φ, i.e. it cannot
return a φ and a K ′ s.t. φ(K ) = K ′ for a random K .

Call Φ Collision-Resistant (CR) if:
No adversary can trigger collisions between two φ’s, i.e. it
cannot return φ1 and φ2 s.t. φ1(K )=φ2(K ) for a random K .



The Bellare-Kohno Theorem

Theorem (Bellare and Kohno – EUROCRYPT 2003)

Fix a key space K and domain D. Let Φ be a set of RKD
functions over K. Suppose Φ is both CR and UP. Then no
adversary can break an ideal cipher under related-key attacks:

Advprp-rka
Φ,K,D (A) ≤ Advcr

Φ (B) + Advup
Φ (C) .



The Bellare-Kohno Theorem: Proof

AE(·,·),E(φ1(K ),·),E(φ2(K ),·)

Proof.
Assume different φ’s always lead to different keys:

CR allows separating distinct φ1 and φ2 queries.
UP allows separating φ queries from E or E−1 queries.

Now answer queries randomly.



Interpretations of the BK Theorem

The BK theorem is about ideal ciphers.
What does it mean for real block ciphers?

1 For any CR and UP Φ, there is a block cipher E which
resists Φ-restricted attacks.

2 There is a block cipher E which resists all Φ-restricted
attacks, as long as Φ is CR and UP.



Interpretations of the BK Theorem

The difference is in the order of quantifiers.
1 ∀Φ, ∃E , E is Φ-secure.
2 ∃E , ∀Φ, E is Φ-secure.

In the BK theorem E is chosen randomly after Φ.
So the 1st interpretation is accurate, and don’t expect
natural counterexamples.
Want E to resist all Φ-restricted attacks, including those
which may depend on E : 1st is not as useful as 2nd.
But we show a natural counterexample to the 2nd
interpretation.



Bernstein’s Attack - The RKD set

Consider the E-dependent RKD set:

∆E := {K 7→ K ,K 7→ E(K ,0)}

If E is PRP secure, then this set is both UP and CR.



Bernstein’s Attack - The Attack

Algorithm Af : (where f is either E or G)
Query RK on (K 7→ K ,0). Get x := f (K ,0)
Query RK on (K 7→ E(K ,0),0). Get y := f (E(K ,0),0)
Calculate z := E(x ,0)
Return (z = y)

f = E : have x = E(K ,0), y = E(E(K ,0),0), and
z = E(E(K ,0),0). Hence z = y with probability 1.

f = G : have x = G(K ,0), y = G(E(K ,0),0), and
z = E(G(K ,0),0). Since G is a randomly chosen
permutation

Pr[z = y ] = Pr [E(G(K ,0),0) = G(E(K ,0),0)] ≈ 1/|K|.



Beyond Indistinguishability: Harris’s Attack

Harris gives an attack which recovers the key.
Roughly it works as follows:

The RKD set contains functions φi such that the i-th bit of
E(φi(K ),m) matches the i-th bit of K with noticeable prob.
The key K can then be recovered bit-by-bit (after
amplification).
Slight modification of this set is shown to be UP and CR.
More details in the paper.



RKD Functions with Oracle Access to E and E−1

Our goal is to capture Bernstein-like attacks, i.e.

Model φ’s which depend on E .

Extend modelling of RKD functions:
Allow RKD functions to perform subroutine calls to oracles
O1 and O2.
O1 and O2 are instantiated with E and E−1 respectively.
Write the set as ΦE ,E−1

and functions as φE ,E−1
.

The advantage of an adversary A:

Advprp-orka
ΦE,E−1 ,K,D

(A)

is defined analogously.



Oracle UP and Oracle CR

Call Φ Oracle-Output-Unpredictable (OUP) if:
No adversary can return a φE ,E−1

and a K ′ such that:

φE ,E−1
(K ) = K ′,

where K and E are randomly chosen.

Call Φ Oracle-Collision-Resistant (OCR) if:

No adversary can return φE ,E−1

1 and φE ,E−1

2 such that:

φE ,E−1

1 (K ) = φE ,E−1

2 (K ),

where K and E are randomly chosen.



Taking Care of Extra Collisions

Recall now φ’s have oracle access to E and E−1.
New collisions between implicit and explicit queries to E or
E−1 might arise:

Between φ’s query and A’s RK queries on φ′ 6= φ.
Between φ’s query and A’s RK queries on φ′ = φ!
Between φ’s query and A’s query to E or E−1.

Take care of this by introducing a new condition which
rules out such collisions.



New Condition: Oracle-Independence

Call Φ Oracle-Independent (OIND) if:
No adversary can return a φ′E ,E

−1
(K ) or a key K ′, another

(not necessarily distinct!) φE ,E−1
(K ), and an x such that:

(φ′E ,E
−1

(K ) or K ′, x)∈{Queries by φE ,E−1
(K ) to E/E−1},

where K and E are randomly chosen.



Main Theorem

Theorem
Fix a key space K and domain D. Let ΦE ,E−1

be a set of oracle
RKD functions over K. Suppose this set is OCR, OUP, and
OIND. Then no adversary can break the ideal cipher under
oracle related-key attacks. More formally:

Advprp-orka
ΦE,E−1 ,K,D

(A)≤Advocr
ΦE,E−1 (B)+Advoup

ΦE,E−1 (C)+Advoind
ΦE,E−1 (D)

Remark: For standard RKD sets the OIND condition is
automatically satisfied. Hence the above is an extension of the
BK theorem.



Main Theorem: Proof

AE(·,·),E(φ
E(·,·)
1 (K ),·),E(φ

E(·,·)
2 (K ),·)

Proof.
OCR allows separating distinct φ1 and φ2 queries.
OUP allows separating φ queries from E /E−1 queries.
OIND allows separating E /E−1 queries in the exponent from
both E /E−1 and φ queries downstairs.



Results: Ruling out Bernstein’s Attack

Theorem
Let

∆E := {K 7→ K ,K 7→ E(K ,0)}

denote Bernstein’s set of oracle RKD functions. Then ∆E does
not satisfy the oracle-independence property.

Remark: Harris’s attack also doesn’t satisfy OIND.



Results: Possibility Results

Theorem (EMV)

Fix a key space K, and let D = K. Then the following oracle
RKD set is OCR, OUP, and OIND.

ΩE := {K 7→ E(K , x) : x ∈ D}.

Theorem
Fix a key space K, and let D = K. Then the following oracle
RKD set is OCR, OUP, and OIND.

ΘE := {K 7→ K ,K 7→ E(0,K )}.



Final Remarks

Bernstein’s and Harris’s attacks are “illegal” in the new
model.
Even if we forget about the new condition, the attacks can
now be replicated in the ICM.
Expect a good block cipher E? to resist ΩE?- and
ΘE?-restricted attacks.
In Biryukov et al.’s attack on AES the nature of dependency
on E is not known, as it uses underlying building blocks.
Hence the attack should be seen as interesting.



Thank You

Thank you for your attention.
Questions/Suggestions?
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